If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+256x+21=0
a = 18; b = 256; c = +21;
Δ = b2-4ac
Δ = 2562-4·18·21
Δ = 64024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64024}=\sqrt{4*16006}=\sqrt{4}*\sqrt{16006}=2\sqrt{16006}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(256)-2\sqrt{16006}}{2*18}=\frac{-256-2\sqrt{16006}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(256)+2\sqrt{16006}}{2*18}=\frac{-256+2\sqrt{16006}}{36} $
| 247=189-u | | 2q=5=13 | | .35x+3.25(3)=16.50 | | z/4+4=6z/2 | | -v+11=223 | | 14x-21=180 | | 80x+4=100x-2 | | 11=2x+5-6x-6 | | 11=(2x+5)(6x-6) | | 6x+1+4x-11+4x-11=180 | | 6x-10=32+2x | | 11=2x+5+6x-6 | | 2(x+6)+6=4x-2 | | √n+5-√n-10=1 | | 5,6-3(2-0,4y)=0,4(4y-1) | | X=10t^2-40t+55 | | 2r^2+16r-150=-4r | | 65-12x=4x+3 | | 4.08x+3.75x=6000 | | (4x-3)+(6x-4)=180 | | 6x+5=30x-10 | | 50=3(s+16) | | Xx.025=X=106,941 | | 5x+17=4(3x-7) | | 9(c+8)=153 | | -8-4y=2y+16 | | (7x+6)=(5x+3)=(3x-9) | | 5y+4y=135 | | 3.3x-4.1x=2x | | 5(b-5)=15 | | -7=-5+h | | 5b-64=51 |